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Abstract--With reference to the stationary and laminar forced convection in a circular duct for an 
incompressible Newtonian fluid having a fully developed velocity profile, previous studies on the existence 
of an asymptotic thermally developed region are improved. A sufficient condition, much broader than 
those previously found in the literature for the existence of an asymptotic thermally developed region, is 
determined. It is proved that this condition is also necessary if one requires that the asymptotic value of 
the Nusselt number is nonzero. A numerical computation of the temperature field in the thermal entrance 
region for two different wall heat flux distributions which fulfil the sufficient condition for the existence of 
an asymptotic thermally developed region and which yield the same asymptotic value of the Nusselt number 

is performed. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

As is well known [1], several experiments on forced 
convection in circular ducts have pointed out that the 
Nusselt number tends to become invariant along the 
flow direction under certain boundary conditions, 
such as when either the wall temperature or the wall 
heat flux is uniform. This circumstance has raised the 
problem of determining the necessary and sufficient 
condition for the existence of an asymptotic thermally 
developed region. In the literature [2-5], it is com- 
monly accepted that this necessary and sufficient con- 
dition is that the wall heat flux varies, at least asymp- 
totically, with an exponential law. 

In a recent paper [6], a different sufficient condition 
for the existence of an asymptotic thermally developed 
region is found. Namely, it is shown that if the axial 
distribution of wall heat flux qw(x) is such that (1/qw) 
dqw/dx tends to zero for x ~ + oo, then both the local 
Nusselt number and the dimensionless temperature 
profile ,9 = (Tw- T)/(T~- Tb) become asymptotically 
invariant along the duct. Moreover, the asymptotic 
value of the Nusselt number equals 48/11, as in the 
case of uniform wall heat flux. Indeed, this constraint 
on the asymptotic behaviour of q~(x) is satisfied by 
many axial distributions qw(x), which for large values 
of x are neither uniform nor exponentially varying, 
such as power-law wall heat fluxes [6]. 

The aim of this paper is to determine a sufficient 
condition for the existence of an asymptotic thermally 
developed region, which includes as particular cases 
both the condition obtained in ref. [6] and the usually 
accepted condition that the wall heat flux behaves 

exponentially for large values of x. The sufficient con- 
dition determined here is also necessary if one requires 
that the asymptotic value of the Nusselt number is 
nonzero. Reference is made to stationary and laminar 
forced convection in a circular duct for an incom- 
pressible Newtonian fluid with constant properties, 
with a fully developed velocity profile, negligible axial 
conduction and negligible viscous dissipation. 

The paper is organized as follows. First, a constraint 
on the wall heat flux qw(x) is found, which represents a 
necessary condition for the existence of an asymptotic 
radial distribution of dimensionless temperature with 
a non-vanishing asymptotic value of the Nusselt 
number. Then, the boundary value problem which 
describes laminar forced convection in a circular duct 
for an incompressible Newtonian fluid with constant 
properties, with a fully developed velocity profile, neg- 
ligible axial conduction and negligible viscous dis- 
sipation is analysed. A sufficient condition for the 
forced convection problem to allow an asymptotic 
thermally developed region is found. This condition 
is much broader than that obtained in ref. [6], and 
broader than the condition that the wall heat flux 
varies exponentially for large values of x. The asymp- 
totic values of the Nusselt number implied by this 
condition are evaluated by a series method. Finally, 
the theoretical results are illustrated by a finite differ- 
ence determination of the thermal entrance regions 
for two axial distributions of wall heat flux which 
fulfil the sufficient condition for the existence of an 
asymptotic thermally developed region, and which 
yield the same asymptotic value of the Nusselt 
number. 
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NOMENCLATURE 

A, dimensionless coefficients employed in 
Appendix B 

A constant introduced in equation (26) 
[K] 

c, dimensionless coefficients defined in 
Appendix B 

f solution of equation (22) 
function employed in Appendix A 
[ m  3 K 2 S 1] 

k thermal conductivity [W m -~ K -j] 
L length of the tube [m] 
L~h thermal entry length [m] 
L* dimensionless thermal entry length 
N~ number of grid intervals in direction r 
N~ number of grid intervals in direction x 
Nu Nusselt number, 2roqw/[k(Tw- Tb)] 
Pe Peclet number, 2aro/~ 
qw, q~, q,2 wall heat fluxes [W m 2] 
r radial coordinate [m] 
r, radial coordinate at grid position 

(j, N,) [m] 
Ar length of each grid interval in direction 

r [m] 

r0 radius of the tube [m] 
s dimensionless radius, s = r/r~ 
T temperature [K] 
T], T2 temperature fields [K] 
Tj.N~ temperature at grid position (j, Nx) [K] 

T0, T~0 '), T(02) inlet temperature distributions 
[K] 

7 ~ temperature field, 7 ~ = T 1 - -  T 2 [K] 
.~, 3-- 0 solutions of equation (19) 
u velocity component in the axial 

direction [m s ~] 
a mean value of u [m s l] 
x axial coordinate [m] 
x' integration variable [m] 
Ax length of each grid interval in direction 

x [m]. 

Greek symbols 
thermal diffusivity [m 2 s -l] 

fl constant defined by equation (5) [m-I] 
dimensionless parameter, fl = Pe rofl 

y constant employed in equations (35) 
and (36) [m -I] 

,9 dimensionless temperature 
,9 = (Tw -- T ) / ( T . -  Tb) 

% dimensionless function defined by 
equation (4). 

Subscripts 
b bulk quantity 
w quantity evaluated at the wall. 

A NECESSARY CONDITION FOR AN 
ASYMPTOTIC THERMALLY DEVELOPED REGION 

In this section, a constraint on qw which represents a 
necessary condition for the existence of an asymptotic 
thermally developed region with a non-vanishing Nus- 
selt number is determined. 

Hereafter, reference will be made to the stationary 
and laminar forced convection in a circular duct for 
an incompressible Newtonian fluid with constant 
properties, with a fully developed velocity profile, neg- 
ligible axial conduction and negligible viscous dis- 
sipation. Therefore, the energy equation will be writ- 
ten as 

, ,/r~T\ ru(r) OT 

where 0 ~< r ~< r0, x ~> 0, and the axial component u 
of the velocity field is given by the Hagen-Pouiseuille 
expression, 

:2°('-r9 '2 '  

The forced convection problem described above 

allows an asymptotic thermally developed region if, 
for every r, 

. ~ / T w - T \  09  
(3) 

and if there exists a function Oo~(r) such that, for every 
r, 

T ~ - T  
Lira - -  - Lim 0 = ~9~(r). (4) 

. ,~+~ T w -  Tb x~+~ 

It is easily proved that if 0 becomes asymptotically 
invariant then also the Nusselt number Nu = 2roqw/ 
[k(Tw-Tb)] becomes asymptotically invariant, and 
that the asymptotic value of Nu is equal to -2 r0  
dO~/drlr-ro [7]. 

Let us now prove that if the forced convection prob- 
lem allows a thermally developed region and if the 
asymptotic value of the Nusselt number is non-vanish- 
ing, then there exists a real constant fl such that 

1 dqw 
Lim - -  - -  = ft. (5) 

-~+~ qw dx 
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On account of the definition of Nusselt number, qw 
can be expressed as 

- kNU(Tw- Tb). (6) 
q ~ -  2r0 

By employing equation (6), `9 can be rewritten as 

k T w - T  
= ~ro N u - -  (7) qw 

The derivation with respect to x of both sides of 
equation (7) yields 

OT dTw 2roF `9 dqw qw8 dNu qw 0`9-] 
I + 

o~ dx -~ L~u dx Nu ~ d~ J J 

(8) 

The bulk temperature and the bulk dimensionless 
temperature are given by 

rb(x) = ar~ Jo r(r, x)u(r)r dr (9) 

2fr° 
0b(X) = ar 2 Jo `9(r,x)u(r)rdr. (10) 

Since `9 =(Tw-T) / (Tw-Tb) ,  equations (9) and 
(10) yield `gb(x)= 1, for every x. Therefore, on 
account of equations (8)-(10), one obtains 

dTw dTb 2ro[.1 dqw qw dNu 1 
d ~  - d x  + k L Nu dx Nu2 ~ J' (l l) 

The substitution of equation (11) into equation (8) 
yields 

0T dTb 2r0F`9-1 dqw 
0x dx  -L uu dx 

qw(`9-- 1) dNu qw 0`9] 
Uu 2 dx + Nu Ox 3" 

By employing the energy balance equation [1] 

dTb 2et 
d~  = karo q~ 

equation (12) can be rewritten as 

0 T _  2~t qw-  2r0[`9-1 dqw 
Ox kftro --'k-LN'u dx 

q.(`9-  1) dNu qw 0`9q 
Uu ~ dx + Nu dxJ" 

The substitution of equations (7) and (14) into 
equation (1) yields 

0 (r0`9"~= ru(r)[otNu 0--1 dq~ 
Or\ Or} ~ L~r~ qw dx 

+ - -  -- 1 dNu 0`9-] 
Nu dx ~x'J 

Since the forced convection problem allows a ther- 
mally developed region, equation (4) ensures that, 
when x tends to infinity, the left hand side of equation 
(15) tends to a finite limit. On the other hand, on 
account of equation (3), when x tends to infinity, 
0`9/0x tends to zero. Moreover, since the asymptotic 
Nusselt number is non-vanishing, (l/Nu) dNu/dx 
tends to zero and the derivative of oa,(r) at r = r0 is 
non-vanishing. Therefore, when x tends to infinity, 
,9-1 cannot be identically vanishing in the interval 
0 ~< r ~< r0. As a consequence, the right hand side of 
equation (15) tends to a finite limit when x tends to 
infinity, only if there exists a real constant fl such that 
equation (5)holds. 

Note that not only the wall heat fluxes qw(x) ex- 
pressed by an exponential function fulfil equation (5). 
Indeed, with proper values of fl, equation (5) is sat- 
isfied by all polynomial functions, rational functions 
(i.e. ratios between polynomials), hyperbolic func- 
tions and the logarithmic function. On the contrary, 
equation (5) does not hold for wall heat fluxes qw(x) 
expressed by trigonometric functions and functions 
such as x x, x -x, e x:, e -x2. 

A SUFFICIENT CONDmON FOR AN 
ASYMPTOTIC THERMALLY DEVELOPED 

REGION 

In this section, a sufficient condition for the forced 
convection problem to allow an asymptotic thermally 
developed region is determined. 

If  both the inlet temperature distribution and the 
axial distribution of wall heat flux are prescribed, the 
energy equation yields the boundary value problem 

f 0 ( 0 ~  ru(r) OT 

(12) ] k ~ , = , o  = qw(x) " (16) 

/ 
L T(r, O) = To (r) 

(13) In Appendix A, it is proved that equation (16) has 
a unique solution. The proof is similar to that of the 
uniqueness theorem for the initial value problem of 
heat conduction presented in Carslaw and Jaeger [8]. 
It can be easily proved that the uniqueness of the 
solution of the boundary value problem (16) holds 
also if the boundary condition at r = r0 is of the first 
kind, i.e. if the prescribed quantity at r = r0 is the 

(14) temperature. 
Let T~o])(r) and T~02)(r) be two different inlet tem- 

perature distributions. Let us denote by T°)(x, r) the 
solution of equation (16) with To(r) = T~ol)(r), and by 
Ta)(x, r) the solution of equation (16) with To(r) = 
To ~2) (r). It has been proved in ref. [6] that the difference 
T")(x, r) - Ta)(x, r) tends to a constant when x tends 
to infinity. Therefore, neither the asymptotic behav- 

(15) iour of Nu, nor that of the dimensionless temperature 
`9 can be influenced by the inlet temperature distri- 
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bution. In fact, both Nu and 9 are defined through 
temperature differences. As a consequence of these 
results, the analysis of the asymptotic behaviour of 
the dimensionless temperature field can be performed 
by considering the reduced boundary value problem 

a a (3 
: I 

u(r) 8T 

z r- =---- ar a dx 

kT 
ar r=l 

= qw(x) 
0 

(17? 

Equation (17) has infinite solutions : one for every 

prescribed inlet temperature distribution. Obviously, 
any solution can be expressed in the form 

where B = Pe rag. In Appendix B, it is proved that the 
power series which appears on the right hand side of 
equation (23) has an infinite radius of convergence. 

On the other hand, in the case /J’ = 0, it is easily 
proved that a solution of equation (22) is given by 

,f(r) = p’ r2 - I’ - I,; 
4 ( 4ra 24 > (25) 

T(r,x) =~[3(r,x)q~O+~jl’q~(x’)dx’]. Therefore, for high values of x, any solution T(r, x) 

of the reduced boundary value problem (17) can be 

(18) 
expressed as 

where Pe = 2zir,,/a is the Peclet number. On account 

of equations (17) and (I@, function F(r, x) must be 
T(r,.y) = A+ &jWy,(x)+ ~[~..W)dx’] 

such that 
(26) 

If the wall heat flux q,(x) fulfils equation (5) let us 
assume that there exists a solution of equation (19), 
.Fo(r, x), such that, for every r, 

Lim aFo(r, xl 
zz 

o 

X-+5 ax (20) 

(21) 

wherej(r) is an analytic function of r. This assumption 
is legitimate. In fact, by employing equations (5), (20) 
and (21), in the limit x + + co, equation (19) yields 

(22) 

For the case /? # 0, in Appendix B it is proved that 
there exists a solution of equation (22) which is regular 
in r = 0 and is given by 

The coefficients c, are defined by the recursion for- 
mula 

where A is a real constant which depends on the inlet 

temperature distribution. By employing equations 
(22) and (25), it can be easily checked that the bulk 
value of the function j(r), given by 

(27) 

is zero for every value of 8. Therefore, the limit for 
.Y -+ + XX of the dimensionless temperature 9 is given 

by 

Lim Y(r,x) = Lim 
T,(x) - T(r, x) 

r;-+s r-r+c T,(x)-T,,(x) 

On account of equations (23) and (25)-(28), g,(r) 

can be expressed as 

3 ( ) = c, +(g”] 
,r 

$“C.($) 

(29) 

ifp’# 0, and as 

s,i3=:(:-;+-$) (30) 

if fl = 0. Equation (29) yields an analytic function of 
r for every real value of B which does not correspond 
to a zero ofj(r,). Moreover, it can be easily proved 
that 3,(r) is a continuous function of the parameter 
B, for p = 0. In the following section, it will be shown 
that in the range - 100 < 8 < 100 there is a value of 
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r,  namely fl = -40.5549, which corresponds to a zero 
off(r0). 

O n  account of equations (25) and (28), the limit for 
x --,  + oo of 0,9/~x is given by 

JdTw(X) ~T(r, x) 

O~(r, x) Li+m l dx Ox 
Limo~ Ox - T~(x)-  Tb(x) 

dTw(x) dTb(x)] 
dx ~ 1 -O(r,x) Tw(x)--T~ 

~ [f(ro) --f(r)] 

= Lim°~ ( q w w ( ~  

~(r, x) dqw(x)/ 

q~(x) dx I 

= flO~(r)--fl~9o~(r) = 0. (31) 

Equation (31) ensures that equation (3) is fulfilled. 
Finally, on account of equations (24), (29) and (30), 

it can be easily checked that two boundary value prob- 
lems with two wall heat fluxes qw~ (x) and qw2(X) which 
satisfy equation (5) and have the same value of 
determine the same function ,9o~(r). An interesting 
consequence of this result is that the asymptotic Nus- 
selt number, which can be evaluated as 

L i m  Nu = -2 r0  dr . . . .  (32) 

does not depend on the detailed functional structure 
of qw(X), but depends only on ~ = Pe ro r, where fl is 
given by equation (5). In particular, equations (29) 
and (32) yield 

4 ~ nc, 
n = l  

Lim N u -  (33) 

n_~o c. I -- 

while equations (30) and (32) yield 

48 
Lim Nu (34) 

On account of equation (34), any axial distribution 
qw(x) which fulfils equation (5) with fl = 0 yields an 
asymptotic value of Nu equal to 48/11, as it has been 
proved in ref. [6]. A series expression of the asymptotic 
value of the Nusselt number equivalent to that given 
by equation (33) was employed by Roetzel [11] in the 
analysis of laminar forced convection in a circular 
duct with exponentially varying wall heat flux. In this 
paper, equation (33) assumes a broader field of appli- 
cation. 

FULLY DEVELOPED TEMPERATURE FIELD 

In this section, the asymptotic behaviour of the 
temperature field and of the Nusselt number for wall 
heat fluxes which fulfil equation (5) is analysed. 

In the preceding section, it has been proved that 
two different wall heat fluxes which fulfil equation (5) 
and have the same value of fl have also the same 
asymptotic value of the Nusselt number and the same 
asymptotic distribution of dimensionless temperature. 
Equation (5), for any prescribed value of fl, is satisfied 
by exponentially varying wall heat fluxes 
qw(X) =qoexp(flx). Therefore, for any axial dis- 
tribution of wall heat flux qw(X) which fulfils equation 
(5), it is possible to find an exponentially varying wall 
heat flux with the same asymptotic value of the Nusselt 
number and the same asymptotic distribution of 
dimensionless temperature. Indeed, the asymptotic 
values of Nu for exponentially varying wall heat fluxes 
have been determined by various authors, either in 
the absence of axial heat conduction in the fluid [2, 3, 
11, 12] or in the presence of this effect [13]. In Table 
1, asymptotic values of Nu evaluated by equations 
(33) and (34) in the range - 1 0 0  ~< fl ~< 100 are 
reported and compared with those obtained in ref. [3] 
with reference to exponentially varying wall heat flux. 
The values reported in ref. [3] agree with those 
obtained by employing equations (33) and (34). The 
evaluation performed in ref. [3] is based on a numeri- 
cal determination of eigenvalues and eigenfunctions 
and on the computation of a series whose convergence 
is very slow. On the other hand, the series which 
appears in equation (33) has a very fast convergence : 
1000 terms are sufficient to evaluate Nu in the range 

Table 1. Asymptotic values of Nu for various values of 
compared with those obtained by Shah and London [3] for 

exponential wall heat flux 

Nu 
Nu (Shah and London [3]) 

- 100 - 12.0000 
-90  -2.5748 
- 80 1.2135 
- 70 3.7532 - -  
-60  6.3291 
- 50 11.3470 
--40 -- 130.7177 
-- 30 --2.2989 --2.29 
-20  1.6834 1.68 
-- 10 3.3423 3.34 

0 4.3636 4.364 
10 5.1067 5.11 
20 5.6974 5.71 
30 6.1925 6.21 
40 6.6222 6,64 
50 7.0040 7,02 
60 7.3493 
70 7.6655 
80 7.9582 - -  
90 8.2313 

100 8.4877 - -  
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5 0  
. . . .  J ' ' 

- 0 50 
Fig. 1. Plot of the asymptotic value of Nu as a function of F. 

loo 

- 100 ~< ~ ~< 100 with 10 decimal digits accuracy. A 
plot of  the asymptotic value of  Nu as a function of  
is reported in Fig. 1. A singularity occurs for 

= -40.5549.  For  this value o f~ ,  both the Nusselt 
number and the dimensionless temperature dis- 
tribution fail to develop. This and other singularities 
of  the asymptotic Nusselt number which may occur 
are not determined by any pathological behaviour of  
the asymptotic temperature field. Indeed, Nu becomes 
asymptotically singular whenever Tw-  Tb goes to zero 
for x ~ + ~c. Since./b is identically vanishing, equa- 
tion (26) implies that T,,. Tb goes to zero for x-- ,  
+ ~ if fl is such that./(r,3 = 0. In Fig. 2, a plot of  

J(r)/Pe for fl - -40 .5549 is reported: this value of 
yields/(r,3 = 0. Figure 1 shows also that in the range 

-- 100 ~< ~ ~< 100 the asymptotic value of Nu becomes 
zero for two values of  ~: these values are 

= -83.8618 and ~ = -25.6796.  The latter value 
agrees with that predicted in ref, [14], i.e. ~ = -25 .68 ,  
obtained by an interpolation of  the asymptotic values 
of  Nu determined in ref. [3] for exponentially varying 
wall heat flux. 

THE THERMAL ENTRANCE REGION 

In this section, an illustration of  the results obtained 
in the preceding sections is performed by the numeri- 
cal evaluation of  the temperature field in the thermal 
entrance region for two different axial distributions of  

0.8 

0.6 

0.4 

0.2 

0 

0 0.2 0.4 0.6 0.8 I 

Fig. 2. Plot of/(r):Pe tbr [~'= 40.5549. 

-0.2 
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qw(q 0 
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2OO 

100 

0 , 
0 

y 
i I A m i i i i . . . . . . . . . . .  , . . . .  , 

1 2 3 4 5 

Fig. 3. Plots of qw~ and of qw2 as functions of ~/x. 

?'x 

wall heat flux, which satisfy equation (5) and which 
have the same value of ft. 

Let us consider the axial distributions of wall heat 
flux defined as 

qwl (x) = qo7 x exp(Tx), (35) 

qw2 (x) = q0 [exp(yx) - 1 ]. (36) 

The axial variations of wall heat flux determined by 
equations (35) and (36) are represented in Fig. 3. The 
plots of qw~(X) and qw2(X) reported in Fig. 3 show 
that these axial distributions differ especially for high 
values of x. However, as it can be easily checked, 
both qw~(x) and qw2(X) fulfil equation (5) with fl = y; 
therefore, they should yield the same asymptotic value 
of the Nusselt number. 

Under the assumption that the inlet temperature 
distribution is uniform with value To, the thermal 
entrance region has been determined with a finite 
difference method, both when the wall heat flux is 
given by equation (35) and when it is given by equa- 
tion (36). The values of the parameters have been 
chosen in order to obtain fl = 10. It is easily verified 
that, for each wall heat flux, the local value of Nu 
as a function of the dimensionless axial coordinate 
x/(2roPe ) is uniquely determined by the value of ft. 

The finite difference method employs a two-dimen- 
sional grid which is uniform both with respect to r 
and to x. The region 0 ~< x ~< L is subdivided in Nx 
intervals with length Ax = L/Nx, while the region 
0 ~< r ~< r0 is subdivided in Nr intervals with length 
Ar = ro/Nr. The computation has been performed with 
N, = 100 and Nx---600. The details of the finite 
difference method are described in ref. [6]. 

The bulk temperature can be evaluated exactly by 
employing equation (13). When the wall heat flux is 

given by equation (35), an integration of equation 
(13) yields 

2ctq0 
Tb(X) = To + ~ [(~x-- 1)exp(~x) + 1], (37) 

while, when the wall heat flux is given by equation 
(36), one obtains 

2~tq0 
Tb(x) = To + ~ [exp(Tx)--Tx- 1]. (38) 

Equations (37) and (38) are employed to check if 
the global energy balance is satisfied by the numerical 
solution. In other words, the exact value of Tb(L), 
evaluated either by equation (37) or by equation (38), 
is compared with the value of Tb(L) obtained by a 
discrete sum approximation of the radial integral in 
equation (9), namely 

Tb(L) ~ - -  TZN ~ 1-- "J r .  
r 2 j=l r 2 J 

(39) 

This comparison has shown that the relative errors 
in the quantity T b ( L ) - T o  due to the numerical 
approximation are less than 1.3%. 

A comparison between the thermal entrance regions 
for the two wall heat fluxes given by equations (35) 
and (36) is presented in Fig. 4. This figure shows that 
the thermal entry length is higher when the wall heat 
flux is given by equation (35). The thermal entry 
length L~h is usually defined as the duct length required 
to achieve a value of local Nusselt number equal to 
1.05 times its fully developed value [3]. The dimen- 
sionless thermal entry length is defined as L* 
= L~h/(2roPe). When the wall heat flux is given by 
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N i l  

9 ~ f l _ ~ O  ] 

8 ~ (a) wall heat flux given by equation (35) 
\ \  

(b) wall heat flux given by equation (36) 

7 ~ Ic) asymptotic value N u  =5.1067 

_ _ _ _ ( c L  

, , , , a , , , , i , i , , i  , , , , , t , J , , i 

10 -2 10 "1 1 

Fig. 4. Plots of the thermal entrance regions obtained with % = q,~ and with q~ = q,,2. 

X 

2roPe 

equation (35), L* = 0.1376. while, when the wall heat 
flux is given by equation (36), L* = 0.0755. 

Figure 4 shows that both wall heat fluxes yield the 
same asymptotic value of the Nusselt number. The 
exact value, reported in Table 1 for # = l 0, is 5.1067. 

CONCLUSIONS 

The stationary and laminar forced convection in a 
circular duct for an incompressible Newtonian fluid 
with constant properties, with a fully developed vel- 
ocity profile, negligible axial conduction and neg- 
ligible viscous dissipation has been considered. 

A constraint on the wall heat flux q~(x) which rep- 
resents a necessary condition for the forced convection 
problem to allow an asymptotic thermally developed 
region with a non-vanishing Nusselt number has been 
determined. This constraint requires that (1/q~) 
d q ~ / d x  tends to a real constant [~ when x --, + )'~, and 
is fulfilled not only by exponential wall heat fluxes, 
but also by functions q~(x) which cannot be approxi- 
mated by an exponential function, even for large 
values of x. Moreover, it has been proved that the 
above mentioned constraint determines also a 
sufficient condition for the forced convection problem 
to allow an asymptotic thermally developed region. 
More precisely, it has been proved that if the wall heat 
flux is such that (l/qw) d q ~ / d x  tends to a real constant 
fl when x --* + oo, and if the dimensionless parameter 

is not a zero of f(ro), both the Nusselt number 
and the dimensionless temperature profile tend to an 
asymptotically invariant and non-vanishing limit 
when x ~ + oo. The asymptotic values of the Nusselt 
number implied by this condition are uniquely deter- 

mined by the dimensionless parameter # and have 
been evaluated by a series method in the range 
-100~#~< 100. It has been shown that, in this 
range, the asymptotic value of the Nusselt number 
becomes singular when # = - 4 0 . 5 5 4 9 .  Finally, a 
finite difference computation of the temperature field 
in the thermal entrance region for two axial dis- 
tributions of wall heat flux has been performed. These 
axial distributions fulfil the sufficient condition for the 
forced convection problem to allow an asymptotic 
thermally developed region with the same value of B- 
In agreement with the theoretical results obtained in 
this paper, the numerical computation confirms that, 
when fl = 10, both wall heat fluxes yield the same 
asymptotic value of the Nusselt number, i.e, 
Nu = 5.1067. 
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APPENDIX A 

Let us prove that if Tiff, x) and T2(r,x) are two tem- 
perature fields which solve the boundary value problem (16), 
then 7"1 (r, x) = T~(r, x) for every r and for every x. In fact, 
it can be easily checked that the function 7~(r,x) 
= Tt(r, x) - T2(r, x) is a solution of  the boundary value prob- 
lem 

~\ ~ )= = ~ x  

-o 
ar I,=,o- 
T(r, O) = O. 

(A1) 

Let us define a function ~ ( x )  as follows : 

f,  r° ~ 2 
~(X)  = I T(r,x) u(r)rdr. 

Jo 
(A2) 

Obviously, on account of  equation (2), ~ ( x )  >/0 for every 
x/> 0. In particular, equations (A1) and (A2) ensure that 
~,~(0) = 0. The derivative of o~(x) is given by 

d~-(x) ~"o .,~, . a~P(r, x ) . ,  • 
d~x-- = 2Jo " t r ' x ) ~  -utr)r°r" (A3) 

By employing equation (A1), equation (A3) can be rewrit- 
ten as 

d ~ ( x )  fi0 m, , 0 / /  OT(r,x)'~, 
d ~  = 2~ xtr, x) ~rtr ~ff~-r ) ar. (A4) 

An integration by parts of  the right hand side of equation 
(A4) yields 

d.~(x) . [ ,~, a ; r ( r , x ) ] ' ,  . e i ~ ,  \l,.rl&,r.x)l 2 
dx  - z ~ L r x t r ' x J ~ l o - Z ~ J o  t ~ )  dr. 

(A5) 

By employing the condition of regularity of  7 ~ at r = 0, i.e. 
c/~/&l,=0 = 0, and the boundary condition on 7~at r = r0, 
equation (A5) yields 

fo ° r (  a]ff(r' x)'~ 2 d ~ ( x )  _ _2¢t dr. (A6) 
dx \ ~ ]  

Obviously, equation (A6) ensures that do~(x)/dx ~< 0 for 
every x >/0, i.e. ~ ( x )  is a monotonically decreasing function 
ofx.  Since ~ ( 0 )  = 0, one concludes that ~ ( x )  ~< 0 for every 
x/> 0. On the other hand, on account of  equation (A2), 
~ ( x )  is non-negative. Therefore, ~ ( x )  = 0 for every x/> 0. 
The integral on the right hand side of  equation (A2) vanishes 
only if the integrand is zero, i.e. if 7~(r, x) = 0 for every r and 
for every x. 

APPENDIX B 

The boundary value problem given by equation (22) can 
be rewritten as 

f d ( r d f ~  = 2ft(r - r3~(flf+ 4~ 
d r \  d r )  c~ \ r~J\ ro/ 

dA = e  
dr I,=, ° r0 

(Bl) 

If the dimensionless radius s = r/ro is employed, the differ- 
ential equation can be expressed as 

d2f d f  _ , , 3  
S ~ s z + ~ s + l " e r o P t S - s )  ( f +  ~ r0 )=  0- (B2) 

Equation (B2) has a regular singular point at s = 0 and 
can be solved through a power series by the method of  
Frobenius [9]. Letf(r)  be expressed by the power series 

4 + s , , ; o A , S ,  f(r) = -- flr-~ ,= (B3) 

By substituting equation (B3) into equation (B2), one 
obtains on the left hand side of equation (B2) a power series 
whose coefficients must vanish. In particular, by equating to 
zero the coefficient of the lowest power of  s, namely s" -  ~, 
one obtains m = 0. By equating to zero the coefficients of  the 
higher powers of s, one obtains a recursion relation which 
determines A0, A~, . . . ,  A . . . . .  , namely 

Az,+~ = 0 ,  n>~0 

A~ =~Ao 

O 

A4 = 1 ~  ( A 2 -  A ° )  

A2n=~(A2n-2-A2n 4), 
(2n) 

n >1 2. (B4) 

Therefore, the power series contains only even powers of  
s and has an infinite radius of  convergence as it can be easily 
inferred by employing the theorem A reported in Section 29 
of  Simmons [9]. Let us define the coefficients c, as 

a2n c . = ~ -  0, n~>0. (B5) 

Since m = 0, by substituting equation (B5) in equation 
(B3) and by employing equation (B4), one obtains 

4 oc 
f ( r )  = -- 7 -  +Ao  ~ Cn s2"" 

pro n = o 
(B6) 
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The constant A0 can be determined by imposing the bound- hand side of  equation (B7) is convergent. On account of  
ary condition which appears in equation (B1), namely equations (B6) and (B7),f(r) is given by 

FO n=O FO n = 0  

f ( r )  = Pe  

Since derivation does not modify the radius of  convergence 2 ~ no,, 
of  a power series [10], the series which appears on the left ,, ~0 

/~F0 " 
(B8) 


